首页> 外文OA文献 >Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages
【2h】

Optical Properties and Quasiparticle Band Gaps of Transition-Metal Atoms Encapsulated by Silicon Cages

机译:硅笼封装的过渡金属原子的光学性质和拟粒子带隙

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Semiconductors assembled upon nanotemplates consisting of metal-encapsulating Si cage clusters (M@Si-n) have been proposed as prospective materials for nanodevices. To make an accurate and systematic prediction of the optical properties of such M@Si-n clusters, which represent a new type of metal silicon hybrid material for components in nanoelectronics, we have performed first-principles calculations of the electronic properties and quasiparticle band gaps for a variety of M@Si-12 (M Ti, Cr, Zr, Mo, Ru, Pd, Hf, and Os) and M@Si-16 (M = Ti, Zr, and Hf) clusters. At first stage, the electronic structure calculations have been performed within plane-wave density functional theory in order to predict equilibrium geometries, polarizabilities, and optical absorption spectra of these endohedral cagelike clusters. The quasiparticle calculations were performed within the GW approximation, which predict that all of these systems are semiconductors exhibiting large band gaps. The present results have demonstrated that the independent-particle absorption spectra of M@Si-n, calculated within the local density or generalized gradient approximations to density functional theory, are dramatically influenced by many-body effects. On average, the quasiparticle band gaps were significantly increased, in comparison with the independent-particle gaps, giving values in the 2.45-5.64 eV range. Consequently, the inclusion of many-body effects in the electron electron interaction, and going beyond the mean-field approximation of independent particles, might be essential to realistically describe the optical spectra of isolated M@Si-n clusters, as well as their cluster-assembled materials.
机译:已经提出了在由金属封装的Si笼簇(M @ Si-n)组成的纳米模板上组装的半导体作为纳米器件的潜在材料。为了准确,系统地预测此类M @ Si-n团簇的光学性质,该团簇代表了用于纳米电子学组件的新型金属硅杂化材料,我们已经对电子性质和准粒子带隙进行了第一性原理计算适用于各种M @ Si-12(M Ti,Cr,Zr,Mo,Ru,Pd,Hf和Os)和M @ Si-16(M = Ti,Zr和Hf)簇。在第一阶段,已经在平面波密度泛函理论内进行了电子结构计算,以预测这些内面笼状簇的平衡几何形状,极化率和光吸收光谱。准粒子计算是在GW近似范围内进行的,可以预测所有这些系统都是具有大带隙的半导体。目前的结果表明,在局部密度或密度泛函理论的广义梯度近似范围内计算的M @ Si-n的独立粒子吸收光谱受到多体效应的显着影响。平均而言,与独立粒子间隙相比,准粒子带隙显着增加,其值在2.45-5.64 eV范围内。因此,在电子-电子相互作用中包含多体效应,并且超出独立粒子的平均场近似,对于现实地描述孤立的M @ Si-n团簇及其团簇的光谱可能至关重要。组装材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号